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ABSTRACT Electric vehicles (EVs) are poised to lead the transportation sector as the primary choice of
automobile due to their efficiency and environmental benefits. EVs with enhanced autonomy and reduced
pricing have become feasible in the market, enabling a gradual transition for higher EV penetration. However,
electric vehicles require highly efficient and stabilized charging stations in urban areas to ensure the vehicle’s
charging time is not compromised. In this regard, the Vienna rectifier with a voltage-oriented controller
(VOC) plays a significant role in improving the power quality of the utility grid for EV battery charger
applications. The low stability of the battery charger’s output voltage and current is due to the trial-and-
error method used to select the PI controller gains. In order to improve the voltage and current stability,
the particle swarm optimization (PSO) technique is used to optimize VOC’s PI controller gains. The code
composer studio (CCS) platform integrates the PSO technique for EV battery chargers in the experimental
setup. The Vienna rectifier with VOC for EV battery charger is implemented using TMS 320F28337 digital
signal controller in the test board. Findings indicate that the PSO optimized VOC improves the output voltage
and current stability by 12% compared to the existing trial-and-error technique. Furthermore, the proposed
system is tested in an experimental setup that provides input current THD to less than 5% for different
load variations (up to 1.5kW) to meet the IEEE-519 standards. Results from simulations and experimental
setup verify that the proposed PSO-PI controller-based Vienna rectifier significantly improves EV battery
chargers’ output voltage and current stability.

INDEX TERMS Vienna rectifier, voltage oriented controller (VOC), particle swarm optimization (PSO),
electric vehicles, charging stations.

I. INTRODUCTION
Fossil fuels are widely used to power the existing transporta-
tion sectors in the modern world, which increases pollution,

noise, and global warming [1], [2]. Another key issue for
the existing transportation industry is the fast depletion of
underground petroleum resources due to the overuse of fossil

fuels and the rise in fossil fuel prices [3], [4], [S]. The rising
The associate editor coordinating the review of this manuscript and cost of fossil fuels, environmental pollution, and the finite
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lifespan of fossil fuels have motivated automobile makers to
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investigate alternative sources such as natural gas, hydrogen
gas, and biofuel for automobile applications. Among the
different technological advancements, electric vehicles (EVs)
have received considerable interest as an innovative means
of transportation and are rapidly integrating into the existing
transportation system [6], [7]. The average efficiency of an
internal combustion engine vehicle (ICE) is 25%, which
indicates that only 25% of the fuel is converted to usable
energy, and the other 75% is lost due to heat and friction
losses. In comparison, an electric vehicle has an average
efficiency of 80% [8], but it has practical limitations in
terms of overall mileage and refueling time compared to an
ICE vehicle [9]. The limited range of EVs due to battery
performance poses a significant challenge to their widespread
adoption. Battery performance seems to be influenced only
by battery technology, but actual battery usage and charging
methods also have a significant impact. From this perspec-
tive, the battery charger’s efficiency is critical to the battery’s
overall performance [10]. Power electronic converters play an
important role in ensuring the EV battery charger maintains
high efficiency and stable performance. It has various param-
eters such as input current total harmonic distortion (THD),
power factor, voltage regulation, and filter design. These
parameters are significantly high during nonlinear operating
conditions. In order to avoid nonlinear operating conditions,
various control techniques are proposed to guarantee that
the stability of the system is maintained within the limited
boundaries under different operating conditions. Even more
importantly, due to the nonlinear operating conditions in
the EV battery chargers, the input current harmonics are
increased, resulting in a low input power factor. Conventional
controllers and energy-efficient converters are widely used to
reduce the input current THD less than 5% to meet the IEEE-
519 standards and improve the power factor nearly unity at the
utility grid for EV battery chargers. In this regard, the Vienna
rectifier with a VOC has been chosen to provide input current
THD of less than 5% and improve the power factor to near
unity for EV battery chargers [11], [12], [13]. The VOC'’s
PI controller is highly dependent on the existing trial-and-
error method to achieve a stable output voltage and current.
However, the stability of the output voltage and current is
decreased due to the trial-and-error method. As a result, the
system operates with lower level of reliability under different
load conditions.

PI controllers are commonly available and known for
their simplicity and adaptability [14], [15], [16], and due
to PI controller’s effectiveness, numerous design tech-
niques have been introduced apart from the commonly
used Ziegler and Nichols technique [17]. Furthermore,
to improve the performance of the PI controller, many
tuning guidelines for the structure, control modes, system
model properties, and anti-windup approaches of the PI
controller are extensively developed [18], [19], [20], [21],
[22]. The PI controller’s optimal for providing solutions in
the power industry control system is to significantly reduce
the issues encountered by the system parameters such as
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integral square error (ISE), integral absolute error (IAE),
rise time (#,), starting time (), and peak overshoot (Mp)
[23], [24]. The reduction in these system parameters helps
to improve the stability of the system. In this regard, the
researchers and designers always choose the new algorithm
that has less complexity, uses fewer parameters, and is more
efficient than the existing algorithms [25]. The existing trial-
and-error method of PI controller tuning techniques is inflex-
ible, unstable, and complex. As a result of the lack of knowl-
edge of mathematical models and trial-and-error methods, the
robustness of the PI controller is reduced, resulting in poor
controller performance. In order to address the periodic errors
in the output voltage, sliding mode controllers (SMC) are
implemented in rectifier systems for different load variations.
As a result, the total harmonic distortion at the input current
is maintained at less than 5% to meet the IEEE-519 standards
with linear and non-linear loads [26].

Evolutionary computing techniques, artificial neural net-
works (ANN), and fuzzy logic are used to design the opti-
mized PI controllers. Due to the fast development of computer
power, the PI controller based on a computer is designed
within a short period. The tuning strategies based on the
optimization technique are more efficient than the existing
trial-and-error method due to their independence from system
dynamics and PI control structure [27], [28], [29]. Heuris-
tic algorithm-based optimization strategies used in control
engineering are one of the powerful ways of solving control
issues in a wide range of situations [30], [31], [32], [33],
[34], [35], [36]. These algorithms are particularly useful
in process control due to their simple structure, enhanced
optimization, and fast response. They are more effective at
solving complex optimization problems with many dimen-
sions than conventional optimization approaches. Because of
their adaptability, these algorithms are well-suited to con-
temporary classical design methodologies. Regardless of the
model order, these algorithms serve as a critical tool for
developing classical and modified structured controllers for
an unstable process model class. The genetic algorithm (GA)
[37] and particle swarm optimization (PSO) technique [38]
are the two key strategies commonly used in controller design
applications for optimization. Due to the intensive study
of various algorithms, the PSO technique has significantly
been improved for numerous industrial applications. As a
self-tuning algorithm, the PSO technique uses the Objective
Function (OF) provided to assist the algorithm in identifying
the optimum K, K;, and K; values for the process. As a
typical criticism of nature-inspired design approaches and
bio-inspired metaheuristics, it is often argued that they both
need modifications or adjustments in parameters prior to
optimization. The classical PSO technique, on the other hand,
contains fewer heuristic variables than the GA technique,
making it more straightforward for optimization. Therefore,
the PSO technique is selected to optimize VOC’s PI controller
in this study as a simpler technique.

This study mainly focuses on optimizing VOC’s PI
controller-based Vienna rectifier for EV battery chargers.

VOLUME 10, 2022



G. Rajendran et al.: Dynamic Voltage Stability Enhancement in Electric Vehicle Battery Charger Using PSO

IEEE Access

Three Phase AC

Source Filter DC Output side

Vienna Rectifier

I
I
| I

I
I

I
i \ i
E—C— — ot | 1
| | | T : |
I
| & [y @ I | I
| | : L |
I e i
| —— — ! |
‘ ‘ ! i i
i | I
! \ I ! i
I | | | |
| I I i
| v v v }
! I
i 2000 Microcontroller |
i TMS320F28337xD !
I

I
i

I

FIGURE 1. Block diagram of three-phase Vienna rectifier with a TMS
320F28337xD.
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FIGURE 2. The Park’s and Clark’s transformation voltage-oriented
controller.

The VOC'’s PI controller is optimized with the help of PSO
technique using MATLAB software. The findings show a
reduction in input current THD of 3.27% to satisfy the IEEE-
519 standard. Furthermore, the proposed PSO-PI-based VOC
with Vienna rectifier for the EV battery charger improves the
output voltage and current stability. The system parameters
such as rise time and settling time values are 0.16 seconds and
0.31 seconds, respectively, which is better than the trial-and-
error method. Also, the peak overshoot value is 1.21% for
the Vienna rectifier with VOC for the EV battery chargers.
The system parameters such as rise time, settling time, and
peak overshoot of output voltage and current are improved
using PSO-PI technique for the Vienna rectifier with a VOC.
Hence, the findings show that the proposed system outper-
forms the existing trial-and-error control method in terms
of performance [39]. In addition to the previous research,
this research focuses on experimental validation of PSO
technique for VOC'’s PI controller to provide highly efficient
and stabilized EV battery chargers. The prototype of the
EV battery charger is designed and developed using a TMS
320F28337xD control card on the experimental test board.
The Code Composer Studio (CCS) platform integrates the
PSO technique for EV battery chargers into the experimental
setup. In simulations and real-time experimental tests, it is
clear that the proposed PSO-PI controller-based Vienna rec-
tifier significantly improves the output voltage and current
stability for EV battery chargers.

Il. VIENNA RECTIFIER WITH VOLTAGE-ORIENTED
CONTROLLER

The Vienna rectifier is an energy-efficient converter used
in various advanced industrial applications such as electric
vehicle charging stations, telecommunication applications,
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FIGURE 4. The PSO optimized objective functions for VOC's Pl controller.

data centers, welding power sources, and electric aircraft
applications. It is often used as a front-end power converter
as it can provide input current with THD less than 5% and an
improved power factor at the grid side to satisfy the IEEE-519
standards. The Vienna rectifier also has high-power density
and high-power handling capability for conversion of AC/DC
applications. The block diagram of a three-phase Vienna
rectifier integrated with the C2000 microcontroller is shown
in Fig. 1. In this study, the Vienna rectifier is used as a
front-end converter with VOC for the EV battery charger. The
VOC is a highly efficient controller for EV battery chargers
compared to existing controllers with Vienna rectifier. The
Park’s and Clark’s transformation of VOC is shown in Fig. 2,
and the three PI controller in the voltage-oriented controller
is shown in Fig. 3. Park’s transformation helps to transform
input three-phase quantities such as phase A, phase B, and
phase C into two-phase stationary quantities (o and §). Also,
Clark’s transformation in the VOC helps to transform sta-
tionary two-phase quantities into two-phase rotating quan-
tities or reference frames (d-axis and g-axis). Similarly, the
inverse Park’s transformation and Clark’s transformation help
to convert the rotating two-phase reference frame (d axis and
q axis) into a stationary reference frame and the two-phase
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TABLE 1. Various applications using PSO technique for PI controller optimization.

Ref.

Features

Applications

Remarks

[48]

The combination of PSO technique with PI
controller and fuzzy with PI controller is
proposed to improve the performance of the
system.

Power system application

The input current harmonics are reduced to less than 5%,
which satisfies IEEE-519 standards

[49]

The performance of the system has been
improved with the help of a PSO optimized
optimal fuzzy PI controller than a conventional
PI controller.

Power system application

PSO-based PI controller with fuzzy controller provides
better stable operation than the conventional PI
controller for the power system control system.

[50]

A duplicate PSO (D-PSO) technique is
proposed to track the maximum power at the
wind energy system with zero reactive power.

Wind energy application

PSO-based PI controller optimization for DFIG
parameter optimization provides good reference tracking
performance with reduced overshoot and a faster settling
time.

[51]

The power electronic system such as buck
converter uses PSO technique for optimal K,
and K; control parameters featured in PI
controller in the system.

Power electronic

application

PSO technique optimizes the PI controller that generates
PWM for buck converters in DC/DC power converter
applications.

[52]

The performance of the induction motor drive is
attained using PSO technique for reducing the
system performance parameters such as IAE
and ISE values.

Induction motor drive for
various applications

The response of the vector controller for induction motor
drive is faster using the PSO technique for PI controller.

[53]

The tuning of PI controller featured in the Luo
converter has been compared with the Zeigler
Nicholas method and PSO technique for the
application of SRM motor drive. The proposed
PSO system performs better compared to the
ZN tuning method.

Harmonics reduction for
power electronic
application

PSO technique optimizes the PI controller in the
bridgeless Luo converter to reduce the input current
harmonics in the utility grid side. The proposed system
reduces the input current harmonics to 9% to satisfy
IEEE-519 standards.

[54]

The gain constants (K, and K;) of PI controllers
featured in the inverter for PV system has been
tuning using PSO technique to give best results
compared to the conventional tuning methods.

Solar Photo Voltaic system
application

The power converter in the off-grid PV system is
optimized to reduce input current THD by less than 5%
to meet the IEEE-519 standards. As a result, the
proposed system provides an input current THD of
3.94% for off-grid PV systems.

[55]

A novel hybrid PSO-pattern search technique
for fuzzy-based PI controller tuning method
surpasses many previously suggested strategies,
making it a highly promising technique for
handling  more complex engineering
optimization issues in the future.

Automatic Generation
Control  of  multi-area
power system application

PSO optimized fuzzy PI controller for automatic
generation control of multi-area systems. The proposed
system provides better performance for robustness
analysis, sensitivity analysis, two area power systems
with governor dead band nonlinearity, and three area
power systems with generation rate constraints.

[56]

The capacitive voltage transformer's (CVT)
error has been reduced using PSO technique. In
this research, the double regression PSO
technique has been proposed to perform better
than the conventional controllers.

Power system operation
and control application

PSO technique proposed in this study aims at the high-
precision requirements of CVT measurement. The
proposed system provides the lowest regression error
based on amplitude or phase error calculation. Compared
with different optimization algorithms, PSO can perform
better to improve the accuracy of calculating the
measurement error of the power transformer.

[57]

The Particle Swarm Optimisation technique
provides the optimal scheduling for electric
vehicles with a microgrid.

Electric vehicle charging
schedule application

PSO optimization is used to optimize the placing of
charging stations based on the location. Therefore, the
proposed system can solve the scheduling problems, and
adaption of the charging station is made according to the
specific situation of the problem.

reference frame into three-phase ABC systems, respectively.
The existing trial-and-error method-based Vienna rectifier

with a voltage-oriented controller helps to reduce the input
current THD to less than 5% and improve the power factor
at the utility grid side. In addition, the PSO optimization

of VOC'’s PI controller with Vienna rectifier for EV battery

The synthesis of the PI controllers is mathematically
described by,

t
u(t) = Kye (t) + K; / e (t)dt (1)
0

charger helps to optimize the gain constants of PI controller
to improve the system’s stability.

VOLUME 10, 2022

where K, is the proportional gain constant, K; is the integral
gain constant, and e (¢) is the difference between the set point
and the plant output.
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TABLE 2. Control parameters of Pl controller with PSO algorithm [37].
W Best Iteration K, K; Mp t.(s) ty(s) ISE IAE
Values Number

0.25 1 50 0.5832  0.5352 0 34 32 6.527  2.845

2 100 0.5682  0.5830 0 32 3.6 5428  2.928

3 150 0.5483 0.5416 0.002 4.2 3.1 6.467  2.586

0.5 1 50 0.6243 0.6924 0 4.4 4.5 7.934  2.674

2 100 0.6300 0.6378 0 5.6 5.2 7.856  2.652

3 150 0.6482 0.5518 0.006 2.9 7.5 6.54 2451

0.75 1 50 0.6218  0.6457 0 33 54 7456  2.670

2 100 0.7346  0.6295 0.0046 6.4 7.1 5.98 2.954

3 150 0.5873 0.5967 0 3.2 8.3 8.652  3.018

1.0 1 50 0.3865 0.7357  0.1524 1.5 7.9 4.672 1976

2 100 0.5760  0.8351 0.1211 1.6 8.8 3.651 1.789

3 150 0.9582  0.5882 0 5.3 5.3 6.492 2354

The K, and K; gain constant values of the VOC’s PI
controller are traditionally optimized with the help of the
trial-and-error method. By using the trial-and-error method,
the system’s stability has been reduced and it takes a
long time to process the overall system operation in the
numerical analysis and the experimental test. In order to
overcome the problems mentioned above in the VOC’s PI
controller, the PSO technique has been introduced. The PSO

97772

optimization technique helps to optimize the gain constant
values of the PI controller with a reduction in the overall
operation time. Consequently, the stability of the system has
been improved.

IIl. PSO CONTROLLER DESIGN AND TUNING
The PSO approach is an evolutionary optimization method
inspired by flocks of birds and schools of fish. It is often
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FIGURE 7. Cross-sectional Board view of Vienna Rectifier with VOC.

implemented in various engineering applications due to its
superior computational efficiency [40], [41], [42]. The PSO
approach converges faster and more consistently than other
population-based stochastic optimization approaches, such
as the genetic algorithm (GA) and ant colony optimization
(ACO) [30], [31], [33], [43], [44], [45]. The PSO tech-
nique is a time-efficient technique that identifies the system
parameters and configures PI controllers in process control
applications for various scenarios [46]. The PSO technique
used in various industries is presented in Table 1. In addition,
the output performances of EV battery charger are simulated
using MATLAB, and the results are presented in Table 2.
The three main stages of PSO algorithm can be explained as
follow:

« Evaluating the fitness value of each particle.

« Updating local and global best fitness and positions.

« Updating the velocity and the position of each particle.
The following equations give the particle position and veloc-
ity update for optimizing the PSO algorithm [47].

VI = wVE 4 Cun [y = XE| 4 Cara Xy — XY

pbest i
(2)

k+1 k k+1
X =X +V; 3
where 1 = index of the particle

Vik and Xl.k = velocity and position of particle

w = inertia constant and C and C, = coefficients

r1 and rp, = random values and X k  and X¥ = local

- pbest gbest
and global best positions of each particle.

This study’s novel or original contribution is optimizing
VOC’s PI controller for electric vehicle charging stations.
In this study, the VOC’s PI controller has been optimized by
using the particle swarm optimization technique to improve
the stability of the EV charging stations. Also, the PSO
technique helps to reduce the input current THD to less than
5% to meet the IEEE-519 standards and to improve the power
factor near unity at the utility grid.

One of the critical performance criteria in the design of PI
controller is the error between plant output and the set point
signal value. Using these criteria as the fitness function of
the optimization method leads to a minimum overshoot and

VOLUME 10, 2022
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FIGURE 10. Three-phase input current with PSO technique, 650V DC
output, and 1131W.
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FIGURE 11. Three-phase input voltage with PSO technique, 650V DC
output, and 1131W.

a considerable settling period. Typically, fitness functions are
derived from error equations. The fitness functions used in
this research work are integral square error (ISE) and integral
absolute error (IAE), and the equations are as follows:

t

ISEpr, = [) [(Varer _erea’back)(t)]z-dl‘ @)
t

IAEp;, = fo ((Warep — Vieedback (1)) -t 5)
t

ISEpr, = /O (o — ifeedback)()]*.dt (©6)
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FIGURE 12. Three-phase input current with PSO technique, 650V DC
output, and 1176.5W.
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FIGURE 13. Three-phase input voltage with PSO technique, 650V DC
output, and 1176.5W.

t

IAEpr, = /(; |(ref — ifeedbaci (1)) -t @)
t

ISEpr; :/0 (o — ifeedback ()]t (8)
t

IAEp; = /O | (e — ifeedback)(1))| -dt )

The cumulative objective function for the proposed PSO
optimized VOC’s PI controller is

Ob;. function = /Ot [(Vares — eredback)(t)]z_dt
+ /(;t |(Warep — Veedback)(1))] .dt
+ /0’ [Gire — ifecdback)(t)]*.dt
+ /Ol |(Gref — ifeedback)(@))| .dt
* fol [(iyef — ifeedback) ()] dt

t
+ fo (G — iceabac)O)| e (10)

where, equations (4) and (5) represent the integral square
error and integral absolute error for voltage controller,
and equations (6), (7), (8), and (9) represent the integral
square error and integral absolute error for current con-
trollers in the VOC. The proposed objective function for the
VOC'’s PI controller is represented by equation 10. Based
on the design and control system, engineers are able to
develop fitness-specific functionalities. The fitness function
used to monitor the optimization search affects evolutionary
algorithms’ overall performance (convergence speed and
optimization precision). To determine the optimal fitness
function i.e., the objective function of the PSO technique,
the optimization process has been conducted for the standard
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FIGURE 16. Input current THD for PSO-based Vienna rectifier with
1215.5W output power.

two error equations (ISE and IAE) for different iterations
such as 100, 200, 500, and 1000 cycles. Table 2 provides a
detailed performance of Objective functions for PSO opti-
mized VOC’s PI controller. The integral absolute error (IAE)
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TABLE 3. Output performance of vienna rectifier for EV charging stations with and without PSO algorithm for different load conditions.

Conventional VOC VOC with PSO algorithm
Input Input DC DC Output Input Input DC DC Output
Current  Voltage  Output Output Power Current  Voltage  Output Output Power
THD THD Voltage  Current W) THD THD Voltage  Current W)
(“) (“o) ™) A) () (“o) \) A)
3.48 1.47 650V 0.56 364 2.62 1.41 650V 0.49 318.5
3.37 1.39 650V 0.61 396.5 2.46 1.36 650V 0.65 4225
3.27 1.38 650V 0.68 442 2.47 1.36 650V 0.69 448.5
3.25 1.39 650V 0.78 507 2.46 1.39 650V 0.85 552.5
3.27 1.42 650V 0.90 585 242 1.38 650V 0.95 617.5
3.27 1.39 650V 1.10 715 2.47 1.37 650V 1.16 754
3.28 1.38 650V 1.45 942.5 2.46 1.36 650V 1.35 877.5
3.27 1.39 650V 1.62 1053 2.47 1.39 650V 1.74 1131
3.35 1.58 650V 0.66 429 2.72 1.52 650V 0.54 351
3.36 1.49 650V 0.71 461.5 2.56 1.66 650V 0.61 396.5
3.29 1.48 650V 0.78 507 2.21 1.86 650V 0.65 422.5
3.28 1.39 650V 0.88 572 2.34 1.81 650V 0.77 500.5
3.21 1.62 650V 1.2 780 2.37 1.84 650V 0.93 604.5
3.23 1.49 650V 1.36 884 2.31 1.74 650V 1.30 845
3.25 1.48 650V 1.55 1007.5 2.34 1.87 650V 1.56 1014
3.27 1.49 650V 1.65 1072.5 2.37 1.69 650V 1.81 1176.5
3.44 1.43 650V 0.54 351 2.65 1.45 650V 0.51 331.5
3.47 1.46 650V 0.61 396.5 2.45 1.32 650V 0.63 409.5
3.17 1.29 650V 0.66 429 2.47 1.38 650V 0.68 442
3.35 1.48 650V 0.75 487.5 2.46 1.57 650V 0.88 572
3.46 1.37 650V 0.94 611 2.47 1.86 650V 1.06 689
3.27 1.58 650V 1.13 734.5 2.47 1.79 650V 1.25 812.5
3.52 1.64 650V 1.47 955.5 2.46 1.93 650V 1.58 1027
3.35 1.85 650V 1.63 1059.5 2.47 2.16 650V 1.87 1215.5

provides the minimum settling time, peak overshoot, and
rise time among the two conventional objective functions.
As stated before, any objective function could be used to
optimize the PI parameters. However, the challenging part is
reducing the rise time without increasing the peak overshoot
value. By decreasing the rise time, the system will attempt
to track the set point faster, resulting in higher inertia and
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a higher risk of peak overshoot value. With the help of the
best convergence values of integral absolute error, the optimal
time response (rise time, settling time, and peak overshoot)
has been obtained in all cases.

The PSO optimized objective functions such as integrated
square error and integrated absolute error of voltage and
current controller in the VOC’s PI controller for EV charging
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FIGURE 17. Overall control circuit: output voltage control with inner current loop.

application are shown in Fig. 4. The objective functions are
optimized with the help of PSO technique in order to provide
stable operation of an EV charging station. Consequently,
PSO optimized VOC’s PI controllers provide regulated DC
output voltage, maintaining input current THD less than 5%
to meet IEEE-519 standards, and power factor nearly unity at
the utility grid side. The existing system consists of a Vienna
rectifier with a trial-and-error method of VOC’s PI controller,
which is represented by Fig. 5(a) in contrast with the proposed
Vienna rectifier with VOC’s PI controller optimization using
the PSO technique shown in Fig. 5(b). and the flowchart
of PSO technique for PI controller optimization is shown
in Fig. 6.

IV. EXPERIMENTAL IMPLEMENTATION

The cross-sectional board view of Vienna rectifier with VOC
and experimental implementation of the PSO algorithm-
based voltage-oriented controller for the Vienna rectifier is
developed using the TMS320F28837xD digital signal con-
troller. In this study, the switching frequency is 50 kHz,
which helps to design the input filter (inductor) and output
filter (split capacitor) in the Vienna rectifier topology (refer
to Fig. 4). The board view of the Vienna rectifier setup is
shown in Fig. 7 and Fig. 8. The MATLAB code generated in
MATLAB software has been encoded with the digital signal
controller (TMS320F28337xD). The PI controller featured
in the VOC is optimized using the PSO technique and the
constant values (Kp and Kj) are encoded in the code composer
studio software for the experimental implementation. The
transient conditions of Vienna rectifier with VOC for various
load conditions has been analyzed using MATLAB/Simulink
software. The DC output voltage of the Vienna rectifier with
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VOC for a transient condition is shown in Fig. 9. The test
board has experimented with various load conditions and
different periods for electric vehicle charging stations. The
load used in this study is a resistive load (Rr) for the exper-
imental validation. The output performance parameters are
recorded using a power quality analyzer. The input current
and voltage for the Vienna rectifier with PSO technique for
the 650V DC with 1131W and output power are illustrated in
Fig. 10 and Fig. 11, respectively. Also, the input current and
input voltage for the Vienna rectifier with the PSO technique
for the 650V DC output voltage with 1176.5W output power
is illustrated in Fig. 12 and Fig. 13, respectively. According
to the experimental test analysis, it has been shown that
the input current THD is 2.47% which is less than 5% to
meet the IEEE-519 standards. The input current THD for
different load conditions is illustrated in Fig. 14, Fig. 15,
and Fig. 16, respectively. The experimental test with the PSO
technique is conducted for 1.5 kW output power for the EV
charging stations. The DC voltage at the output side using
Vienna rectifier with PSO technique is 650V which meets
the basic requirement for EV charging stations. The output
performance of the Vienna rectifier with the PSO algorithm
for three different periods of time in experimental test is
presented in Table 3. In addition, the overall control circuit
with Vienna rectifier with VOC controller for EV battery
charger in order to reduce the input current THD less than
5% and to improve the power factor at the utility grid side is
shown in Fig. 17.

V. CONCLUSION
In this research work, the Vienna rectifier with VOC is
designed and developed as an experimental setup for the
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electric vehicle battery charger. The PSO technique is used
in this research work to optimize the gain values (K, and
K;) of the VOC’s PI controller. The PSO technique optimizes
the system parameters such as rise time and settling time is
1.6 seconds and 3.1 seconds, respectively, which is better than
the conventional controller (trial-and-error method). Also,
the peak overshoot value is 1.21% for the Vienna rectifier
with a VOC. The findings show that the voltage and current
stability are improved by 12% compared to the existing trial-
and-error method. The experimental test uses a digital signal
controller (TMS 320F28337xD) with the Code Composer
Studio (CCS) platform. The input current THD measured
during the experimental validation is 2.47%, less than 5% to
meet the IEEE-519 standards. In addition to the input current
THD, the power factor at the utility grid is maintained at near
unity. Thus, by utilizing the PSO technique for PI controllers
featured in the VOC, the Vienna rectifier provides the DC
output voltage of 650V and output current of 85A with a unity
power factor at mains and an input current THD less than 5%
to meet the basic requirements for DC fast-charging stations
and IEEE-519 standards.
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